首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5218篇
  免费   244篇
  国内免费   901篇
化学   5649篇
晶体学   28篇
力学   18篇
综合类   24篇
数学   13篇
物理学   631篇
  2024年   3篇
  2023年   163篇
  2022年   178篇
  2021年   251篇
  2020年   242篇
  2019年   186篇
  2018年   130篇
  2017年   202篇
  2016年   252篇
  2015年   242篇
  2014年   259篇
  2013年   264篇
  2012年   469篇
  2011年   316篇
  2010年   284篇
  2009年   345篇
  2008年   359篇
  2007年   331篇
  2006年   303篇
  2005年   287篇
  2004年   272篇
  2003年   188篇
  2002年   137篇
  2001年   138篇
  2000年   76篇
  1999年   59篇
  1998年   69篇
  1997年   53篇
  1996年   41篇
  1995年   53篇
  1994年   18篇
  1993年   31篇
  1992年   28篇
  1991年   25篇
  1990年   17篇
  1989年   12篇
  1988年   20篇
  1987年   14篇
  1986年   4篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   11篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有6363条查询结果,搜索用时 15 毫秒
1.
This study was aimed at the development of a conductometric biosensor based on acetylcholinesterase considering the feasibility of its application for the inhibitory analysis of various toxicants. In this paper, the optimum conditions for enzyme immobilization on the transducer surface are selected as well as the optimum concentration of substrate for inhibitory analysis. Sensitivity of the developed biosensor to different classes of toxic compounds (organophosphorus pesticides, heavy metal ions, surfactants, aflatoxin, glycoalkaloids) was tested. It is shown that the developed biosensor can be successfully used for the analysis of pesticides and mycotoxins, as well as for determination of total toxicity of the samples. A new method of biosensor analysis of toxic substances of different classes in complex multicomponent aqueous samples is proposed.  相似文献   
2.
Field-effect transistors (FETs) are one of the most widely-used electronic sensors for continuous monitoring and detection of contaminants such as pharmaceuticals and endocrine-disrupting compounds at low concentrations. FETs have been successfully utilized for the rapid analysis of these environmental pollutants due to their advantageous material properties like the disposability, rapid responses and simplicity. This paper presented an up-to-date overview of applied strategies with different bio-based materials in order to enhance the analytical performances of the designed sensors. Comparison and discussion were made between characteristics of recently engineered FET bio-sensors used for the detection of famous and selected pharmaceutical compounds in the literature. The recent progress in environmental research applications, comments on interesting trends, current challenge for future research in endocrine-disrupting chemicals’ (EDCs) detection using FETs biosensors were highlighted.  相似文献   
3.
Excessive consumption of substances such as food colorants, exposure to doses of metal ions, antibiotic residues and pesticides residues above maximum tolerance limit have a detrimental effect on human health. Hence in detecting these harmful substances, the development of sensitive, selective and convenient analytical tools is an essential step. Graphene and graphene like 2D graphitic carbon nitride have shown great promise in the development of electrochemical sensors for determining the levels of these substances in different samples. In this paper, graphene and graphene like 2D graphitic carbon nitride applications on the determination of various food colorants in foods and drinks such as azo dyes (tartrazine, allura red, amaranth, carmine and sunset yellow); metal ions contaminants, antibiotic and pesticide residues in the environment are reviewed.  相似文献   
4.
Monomeric sarcosine oxidase (mSOx) fusion with the silaffin peptide, R5, designed previously for easy protein production in low resource areas, was used in a biosilification process to form an enzyme layer electrode biosensor. mSOx is a low activity enzyme (10–20 U/mg) requiring high amounts of enzyme to obtain an amperometric biosensor signal, in the clinically useful range <1 mM sarcosine, especially since the Km is >10 mM. An amperometric biosensor model was fitted to experimental data to investigate dynamic range. mSOx constructs were designed with 6H (6×histidine) and R5 (silaffin) peptide tags and compared with native mSOx. Glutaraldehyde (GA) cross‐linked proteins retained ~5 % activity for mSOx and mSOx‐6H and only 0.5 % for mSOx‐R5. In contrast R5 catalysed biosilification on (3‐mercaptopropyl) trimethoxysilane (MPTMS) and tetramethyl orthosilicate (TMOS) particles created a ‘self‐immobilisation’ matrix retaining 40 % and 76 % activity respectively. The TMOS matrix produced a thick layer (>500 μm) on a glassy carbon electrode with a mediated current due to sarcosine in the clinical range for sarcosinemia (0–1 mM). The mSOx‐R5 fusion protein was also used to catalyse biosilification in the presence of creatinase and creatininase, entrapping all three enzymes. A mediated GC enzyme linked current was obtained with dynamic range available for creatinine determination of 0.1–2 mM for an enzyme layer ~800 nm.  相似文献   
5.
Optimized combination of chemical agents was selected for sensitive electrochemical detection of dissolved ruthenium tris-(2,2′-bipyridine) (Ru-bipy). The detection was based on the chemical amplification mechanism, in which the anodic current of a redox-active analyte was amplified by a sacrificial electron donor in solution. On indium-doped tin oxide (ITO) electrodes, electrochemical reaction of the analyte was reversible, but that of the electron donor was greatly suppressed. Several transition metal complexes, such as ferrocene and tris-(2,2′-bipyridine) complexes of osmium, iron and ruthenium, were evaluated as model analyte. A correlation between the amplified current and the standard potential of the complex was observed, and Ru-bipy generated the largest current. A variety of organic bases, acids and zwitterions were assessed as potential electron donor. Sodium oxalate was found to produce the largest amplification factor. With Ru-bipy as the model analyte and oxalate as the electron donor, the analyte concentration curve was linear up to 50 μM, with a lower detection limit of approximately 50 nM. Preliminary work was presented in which a Ru-bipy derivative was attached to bovine serum albumin and detected electrochemically. Although the combination of Ru-bipy, oxalate and ITO electrode has been used before for electrochemiluminescent detection of Ru-bipy and oxalate, as well as electrochemical detection of oxalate, its utility in amplified voltammetric detection of Ru-bipy as a potential electrochemical label has not been reported previously.  相似文献   
6.
Molecular electroactive monolayers have been produced from vinylferrocene (VFC) via light-assisted surface anchoring to H-terminated n- and p-Si(1 0 0) wafers prepared via wet chemistry, in a controlled atmosphere. The resulting Si-C bound hybrids have been characterized by means of XPS and AFM. Their performance as semiconductor functionalized electrodes and their surface composition have been followed by combining electrochemical and XPS measurements on the same samples, before and after use in an electrochemical cell. White-light photoactivated anchoring at short (1 h) exposure times has resulted in a mild route, with a very limited impact on the initial quality of the silicon substrate. In fact, the functionalized Si surface results negligibly oxidized, and the C/Fe atomic ratio is close to the value expected for the pure molecular species. The VFC/Si hybrids can be described as (η5-C5H5)Fe2+(η5-C5H4)-CH2-CH2-Si species, on the basis of XPS results. Electrochemical methods have been applied in order to investigate the role played by a robust, covalent Si-C anchoring mode towards substrate-molecule electronic communication, a crucial issue for a perspective development of molecular electronics devices. The response found from cyclic voltammograms for p-Si(1 0 0) functionalized electrodes, run in the dark and under illumination, has shown that the electron transfer is not limited by the number of charge carriers, confirming the occurrence of electron transfer via the Si valence band. The hybrids have shown a noticeable electrochemical stability and reversibility under cyclic voltammetry (cv), and the trend in peak current intensity vs. the scan rate was linear. The molecule-Si bond is preserved even after thousands of voltammetric cycles, although the surface coverage, evaluated from cv and XPS, decreases in the same sequence. An increasingly larger surface concentration of Fe3+ at the expenses of Fe2+ redox centers has been found at increasing number of cv’s, experimentally associated with the growth of silicon oxide. Surface SiO groups from deprotonated silanol termination, induced by the electrochemical treatments, are proposed as the associated counterions for the Fe3+ species. They could be responsible for the observed decrease in the electron transfer rate constant with electrode ageing.  相似文献   
7.
《Electroanalysis》2004,16(19):1576-1582
DeniLite laccase immobilized Pt electrode was used for detection of catechol and catecholamines. The enzymatically oxidized substrates were measured amperometrically. The sensitivities are 210, 75, 60 and 45 nA/μM with the upper limits of linear ranges of 58, 40, 55 and 55 μM and the detection limits (S/N=3) of 0.07, 0.2, 0.3 and 0.4 μM for catechol, dopamine (DA), norepinephrine (NEPI) and epinephrine (EPI), respectively. The response time (t90%) is about 2 seconds for each substrate and the long‐term stability is around 40–50 days with retaining 80% of initial activity. The very fast response and the remarkable long‐term stability are the principal advantages of this sensor. In case of catechol, the pH response of the sensor is mainly determined by enzyme's pH profile, however, in case of catecholamines, both enzyme's pH profile and reversibility of the substrate are operated and the optimal pHs for NEPI and EPI shift towards acidic range compared to that for DA. The presence of ascorbic acid (<50 μM) did not interfere with the measurement.  相似文献   
8.
The electrochemical oxidation of 1, 3-benzenedithiol was investigated in a 0. 100 mol/L tetrabutylammonium perchlorate/acetonitrile electrolyte. The electrochemical techniques used were potential sweep, bulk electrolysis, rotating disc and the potential step method. The combination of the techniques yielded the number of electrons transferred per molecule, the reaction order, the transfer coefficient, the diffusion coefficient and concentration of dithiol anions, the standard heterogeneous rate constant as well as the formal potential and equilibrium constant of the preceeding dissociation reaction. This paper also illustrates the methods for studying the electrode kinetics of reactions which (a) involve a chemical reaction preceeding the electron-transfer process, (b) have insoluble polymer products, and (c) are totally irreversible.  相似文献   
9.
We demonstrate the potential of femtosecond two-color pulse interferometry for in vitro optical glucose monitoring, by dispersion of the group refractive index in a glucose solution sample with respect to a red-color light and a blue-color light. By comparison with femtosecond one-color pulse interferometry, the basic performance of the present system with regard to sensitivity, quantitativeness, and tolerance to surrounding disturbances, is evaluated. The resulting accuracy and precision of glucose determination are 77 and 118mg/dl for 10-mm-sample-thickness, respectively. This near-common-path configuration of the two-color pulse light provides good stability to fluctuations of sample temperature, which is important in clinical applications. Considering the performance of femtosecond two-color pulse interferometry as an optical glucose sensor, a suitable measurement site for in vivo optical glucose monitoring is discussed.  相似文献   
10.
Dendritic nanocrystalline CdS film was deposited at liquid-liquid interface of surfactants and an electrolyte containing 4 mmol L−1 cadmium chloride (CdCl2) and 16 mmol L−1 thioacetamide (CH3CSNH2) with an initial pH value of 5 at 15 °C by electrochemical synthesis. The nanofilm was characterized by transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), ultraviolet visible (UV-vis) absorption spectroscopy and fluorescence spectroscopy. The surface morphology and particle size of the nanofilm were investigated by AFM, SEM and TEM, and the crystalline size was 30-50 nm. The thickness of the nanofilm calculated by optical absorption spectrum was 80 nm. The microstructure and composition of the nanofilm was investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), showing its polycrystalline structure consisting of CdS and Cd. Optical properties of the nanofilm were investigated systematically by UV-vis absorption and fluorescence spectroscopy. A λonset blue shift compared with bulk CdS was observed in the absorption spectra. Fluorescence spectra of the nanofilm indicated that the CdS nanofilm emitted blue and green light. The nanocomposites film electrode will bring about anodic photocurrent during illumination, showing that the transfer of cavities produces photocurrent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号